In silico compound identification for antimalarial therapy
2023
C. K. Tedam University of Science and Technology, Navrongo, Ghana
Malaria caused by Plasmodium falciparum, remains one of the most fatal parasitic diseases that has affected nearly a third of the world’s population. The major impediment to the treatment of malaria is the emergence of resistance of the P. falciparum parasite to current anti-malaria therapeutics. In this study, the researchers employed various in silico techniques to identify potential new inhibitors of two enzyme targets that play a crucial role in fatty acid synthesis in the Plasmodium parasite. Nine hit compounds were identified in total, and all show excellent pharmacokinetic and toxicity properties. The results indicate that the identified compounds could serve as a treatment option for malaria.
In silico identification of potential inhibitors of acyl carrier protein reductase and acetyl CoA carboxylase of Plasmodium falciparum in antimalarial therapy
James Abugri
Added on: 04-25-2023
[1] https://www.frontiersin.org/articles/10.3389/fddsv.2023.1087008/full