Non Animal Testing Database
EnglischDeutsch

Tumor diagnostics with a combination of machine learning and biochip

October 2020
University of California Irvine, Irvine, USA
Performing single-cell analysis is essential to identify and classify cancer cell types and study cellular heterogeneity. This study combines powerful machine learning techniques with easily accessible inkjet printing and microfluidics technology and integrates a nanoparticle-printed biochip for single-cell analysis. The biochip is simple to prototype, miniaturized and cost-effective, potentially capable of differentiating between a variety of cell types in a label-free manner. Feature classifiers are established and their performance metrics are evaluated. The biochip’s ability to discriminate noncancerous cells from cancerous cells at the single-cell level and to classify cancer sub-type cells is demonstrated. It is envisioned that such a chip has potential applications in single-cell studies, tumour heterogeneity studies, and perhaps in point-of-care cancer diagnostics.
A machine learning-assisted nanoparticle-printed biochip for real-time single cancer cell analysis
Rahim Esfandyarpour
#368
Added on: 11-11-2020
Back to Top
English German

Warning: Internet Explorer

The IE from MS no longer understands current scripting languages, the latest main version (version 11) is from 2013 and has not been further developed since 2015.

Our recommendation: Use only the latest versions of modern browsers, for example Google Chrome, Mozilla Firefox or Microsofrt Edge, because only this guarantees you sufficient protection against infections and the correct display of websites!