Non Animal Testing Database

Using deep learning to better understand blood disorders

October 2019
Helmholtz Zentrum München, München, Germany(1)
LMU Munich, Munich, Germany(2)
The authors created a data set containing 18,000 images of individual leukocytes taken from 100 patients diagnosed with acute myeloid leukaemia and from 100 control patients. The specimens were digitized and used to train a deep learning convolutional neural network for leukocyte classification. The network classifies the most important cell types with high accuracy and identifies pathologies with human-level performance. This approach holds the potential to be used as a classification aid for examining much larger numbers of cells in a smear than can usually be done by a human expert. This will allow clinicians to recognize malignant cell populations with lower prevalence at an earlier stage of the disease.
Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks
Carsten Marr(1), Karsten Spiekermann(2)
Added on: 12-17-2020
Back to Top
English German

Warning: Internet Explorer

The IE from MS no longer understands current scripting languages, the latest main version (version 11) is from 2013 and has not been further developed since 2015.

Our recommendation: Use only the latest versions of modern browsers, for example Google Chrome, Mozilla Firefox or Microsofrt Edge, because only this guarantees you sufficient protection against infections and the correct display of websites!