Non Animal Testing Database
EnglischDeutsch

Quantitative method to characterize cell morphology

December 2017
The Catholic University of America, Washington, USA
In this study, human breast cancer cells were cultured in different substrates to classify them depending on their morphology. Digital holographic microscopy coupled with epifluorescence microscopy were used to relate cell phase parameters to actin features. A machine learning method was used to classify the morphologies of cancer cells. The results showed that this method has high accuracy in classifying cell morphologies, which makes it a useful method to monitor cancer cell morphology features.
Quantitative assessment of cancer cell morphology and motility using telecentric digital holographic microscopy and machine learning
Christopher B Raub
#775
Added on: 08-01-2021
Back to Top
English German

Warning: Internet Explorer

The IE from MS no longer understands current scripting languages, the latest main version (version 11) is from 2013 and has not been further developed since 2015.

Our recommendation: Use only the latest versions of modern browsers, for example Google Chrome, Mozilla Firefox or Microsofrt Edge, because only this guarantees you sufficient protection against infections and the correct display of websites!